Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578284

RESUMO

During mitosis, the Bub1-Bub3 complex concentrates at kinetochores, the microtubule-coupling interfaces on chromosomes, where it contributes to spindle checkpoint activation, kinetochore-spindle microtubule interactions, and protection of centromeric cohesion. Bub1 has a conserved N-terminal tetratricopeptide repeat (TPR) domain followed by a binding motif for its conserved interactor Bub3. The current model for Bub1-Bub3 localization to kinetochores is that Bub3, along with its bound motif from Bub1, recognizes phosphorylated "MELT" motifs in the kinetochore scaffold protein Knl1. Motivated by the greater phenotypic severity of BUB-1 versus BUB-3 loss in C. elegans, we show that the BUB-1 TPR domain directly recognizes a distinct class of phosphorylated motifs in KNL-1 and that this interaction is essential for BUB-1-BUB-3 localization and function. BUB-3 recognition of phospho-MELT motifs additively contributes to drive super-stoichiometric accumulation of BUB-1-BUB-3 on its KNL-1 scaffold during mitotic entry. Bub1's TPR domain interacts with Knl1 in other species, suggesting that collaboration of TPR-dependent and Bub3-dependent interfaces in Bub1-Bub3 localization and functions may be conserved.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Ciclo Celular , Cinetocoros , Proteínas Associadas aos Microtúbulos , Proteínas Serina-Treonina Quinases , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Repetições de Tetratricopeptídeos , Proteínas Serina-Treonina Quinases/metabolismo
2.
bioRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370804

RESUMO

Fluorescent biosensors revolutionized biomedical science by enabling the direct measurement of signaling activities in living cells, yet the current technology is limited in resolution and dimensionality. Here, we introduce highly sensitive chemigenetic kinase activity biosensors that combine the genetically encodable self-labeling protein tag HaloTag7 with bright far-red-emitting synthetic fluorophores. This technology enables five-color biosensor multiplexing, 4D activity imaging, and functional super-resolution imaging via stimulated emission depletion (STED) microscopy.

3.
Nat Metab ; 6(2): 273-289, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286821

RESUMO

Mitochondrial dysfunction is a characteristic trait of human and rodent obesity, insulin resistance and fatty liver disease. Here we show that high-fat diet (HFD) feeding causes mitochondrial fragmentation in inguinal white adipocytes from male mice, leading to reduced oxidative capacity by a process dependent on the small GTPase RalA. RalA expression and activity are increased in white adipocytes after HFD. Targeted deletion of RalA in white adipocytes prevents fragmentation of mitochondria and diminishes HFD-induced weight gain by increasing fatty acid oxidation. Mechanistically, RalA increases fission in adipocytes by reversing the inhibitory Ser637 phosphorylation of the fission protein Drp1, leading to more mitochondrial fragmentation. Adipose tissue expression of the human homolog of Drp1, DNM1L, is positively correlated with obesity and insulin resistance. Thus, chronic activation of RalA plays a key role in repressing energy expenditure in obese adipose tissue by shifting the balance of mitochondrial dynamics toward excessive fission, contributing to weight gain and metabolic dysfunction.


Assuntos
Resistência à Insulina , Masculino , Camundongos , Humanos , Animais , Adipócitos Brancos/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Aumento de Peso
4.
PLoS Comput Biol ; 19(4): e1011060, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37083820

RESUMO

Mitochondria form a network in the cell that rapidly changes through fission, fusion, and motility. Dysregulation of this four-dimensional (4D: x,y,z,time) network is implicated in numerous diseases ranging from cancer to neurodegeneration. While lattice light-sheet microscopy has recently made it possible to image mitochondria in 4D, quantitative analysis methods for the resulting datasets have been lacking. Here we present MitoTNT, the first-in-class software for Mitochondrial Temporal Network Tracking in 4D live-cell fluorescence microscopy data. MitoTNT uses spatial proximity and network topology to compute an optimal tracking assignment. To validate the accuracy of tracking, we created a reaction-diffusion simulation to model mitochondrial network motion and remodeling events. We found that our tracking is >90% accurate for ground-truth simulations and agrees well with published motility results for experimental data. We used MitoTNT to quantify 4D mitochondrial networks from human induced pluripotent stem cells. First, we characterized sub-fragment motility and analyzed network branch motion patterns. We revealed that the skeleton node motion is correlated along branch nodes and is uncorrelated in time. Second, we identified fission and fusion events with high spatiotemporal resolution. We found that mitochondrial skeleton nodes near the fission/fusion sites move nearly twice as fast as random skeleton nodes and that microtubules play a role in mediating selective fission/fusion. Finally, we developed graph-based transport simulations that model how material would distribute on experimentally measured mitochondrial temporal networks. We showed that pharmacological perturbations increase network reachability but decrease network resilience through a combination of altered mitochondrial fission/fusion dynamics and motility. MitoTNT's easy-to-use tracking module, interactive 4D visualization capability, and powerful post-tracking analyses aim at making temporal network tracking accessible to the wider mitochondria research community.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Software , Simulação por Computador , Microscopia de Fluorescência , Mitocôndrias/fisiologia , Dinâmica Mitocondrial
5.
J R Soc Interface ; 16(161): 20190619, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31847757

RESUMO

During migration, eukaryotic cells can continuously change their three-dimensional morphology, resulting in a highly dynamic and complex process. Further complicating this process is the observation that the same cell type can rapidly switch between different modes of migration. Modelling this complexity necessitates models that are able to track deforming membranes and that can capture the intracellular dynamics responsible for changes in migration modes. Here we develop an efficient three-dimensional computational model for cell migration, which couples cell mechanics to a simple intracellular activator-inhibitor signalling system. We compare the computational results to quantitative experiments using the social amoeba Dictyostelium discoideum. The model can reproduce the observed migration modes generated by varying either mechanical or biochemical model parameters and suggests a coupling between the substrate and the biomechanics of the cell.


Assuntos
Movimento Celular/fisiologia , Dictyostelium/fisiologia , Modelos Biológicos , Fenômenos Biomecânicos , Transdução de Sinais
6.
Nat Immunol ; 19(11): 1212-1223, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30323343

RESUMO

Activation of innate immunity and deposition of blood-derived fibrin in the central nervous system (CNS) occur in autoimmune and neurodegenerative diseases, including multiple sclerosis (MS) and Alzheimer's disease (AD). However, the mechanisms that link disruption of the blood-brain barrier (BBB) to neurodegeneration are poorly understood, and exploration of fibrin as a therapeutic target has been limited by its beneficial clotting functions. Here we report the generation of monoclonal antibody 5B8, targeted against the cryptic fibrin epitope γ377-395, to selectively inhibit fibrin-induced inflammation and oxidative stress without interfering with clotting. 5B8 suppressed fibrin-induced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and the expression of proinflammatory genes. In animal models of MS and AD, 5B8 entered the CNS and bound to parenchymal fibrin, and its therapeutic administration reduced the activation of innate immunity and neurodegeneration. Thus, fibrin-targeting immunotherapy inhibited autoimmunity- and amyloid-driven neurotoxicity and might have clinical benefit without globally suppressing innate immunity or interfering with coagulation in diverse neurological diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Fibrinogênio/antagonistas & inibidores , Doenças Neurodegenerativas/imunologia , Animais , Epitopos , Humanos , Inflamação/imunologia , Camundongos , Ratos
7.
Bioinformatics ; 33(19): 3145-3147, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957496

RESUMO

SUMMARY: To expedite the review of semi-automated probability maps of organelles and other features from 3D electron microscopy data we have developed Probability Map Viewer, a Java-based web application that enables the computation and visualization of probability map generation results in near real-time as the data are being collected from the microscope. Probability Map Viewer allows the user to select one or more voxel classifiers, apply them on a sub-region of an active collection, and visualize the results as overlays on the raw data via any web browser using a personal computer or mobile device. Thus, Probability Map Viewer accelerates and informs the image analysis workflow by providing a tool for experimenting with and optimizing dataset-specific segmentation strategies during imaging. AVAILABILITY AND IMPLEMENTATION: https://github.com/crbs/probabilitymapviewer. CONTACT: mellisman@ucsd.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica/métodos , Software , Organelas/ultraestrutura , Probabilidade , Fluxo de Trabalho
8.
J Biol Chem ; 289(13): 8781-98, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24500718

RESUMO

Phosphorylation of gap junction proteins, connexins, plays a role in global signaling events involving kinases. Connexin43 (Cx43), a ubiquitous and important connexin, has several phosphorylation sites for specific kinases. We appended an imaging reporter tag for the activity of the δ isoform of protein kinase C (PKCδ) to the carboxyl terminus of Cx43. The FRET signal of this reporter is inversely related to the phosphorylation of serine 368 of Cx43. By activating PKC with the phorbol ester phorbol 12,13-dibutyrate (PDBu) or a natural stimulant, UTP, time lapse live cell imaging movies indicated phosphorylated Ser-368 Cx43 separated into discrete domains within gap junctions and was internalized in small vesicles, after which it was degraded by lysosomes and proteasomes. Mutation of Ser-368 to an Ala eliminated the response to PDBu and changes in phosphorylation of the reporter. A phosphatase inhibitor, calyculin A, does not change this pattern, indicating PKC phosphorylation causes degradation of Cx43 without dephosphorylation, which is in accordance with current hypotheses that cells control their intercellular communication by a fast and constant turnover of connexins, using phosphorylation as part of this mechanism.


Assuntos
Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Movimento , Proteína Quinase C-delta/metabolismo , Proteólise , Animais , Células COS , Chlorocebus aethiops , Conexina 43/química , Junções Comunicantes/efeitos dos fármacos , Células HeLa , Humanos , Movimento/efeitos dos fármacos , Ésteres de Forbol/farmacologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Proteína Quinase C-delta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Serina/metabolismo
9.
Nat Commun ; 3: 1227, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23187627

RESUMO

Blood-brain barrier disruption, microglial activation and neurodegeneration are hallmarks of multiple sclerosis. However, the initial triggers that activate innate immune responses and their role in axonal damage remain unknown. Here we show that the blood protein fibrinogen induces rapid microglial responses toward the vasculature and is required for axonal damage in neuroinflammation. Using in vivo two-photon microscopy, we demonstrate that microglia form perivascular clusters before myelin loss or paralysis onset and that, of the plasma proteins, fibrinogen specifically induces rapid and sustained microglial responses in vivo. Fibrinogen leakage correlates with areas of axonal damage and induces reactive oxygen species release in microglia. Blocking fibrin formation with anticoagulant treatment or genetically eliminating the fibrinogen binding motif recognized by the microglial integrin receptor CD11b/CD18 inhibits perivascular microglial clustering and axonal damage. Thus, early and progressive perivascular microglial clustering triggered by fibrinogen leakage upon blood-brain barrier disruption contributes to axonal damage in neuroinflammatory disease.


Assuntos
Axônios/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Fibrinogênio/fisiologia , Microglia/patologia , Animais , Axônios/fisiologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Fibrina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Microscopia de Fluorescência por Excitação Multifotônica , Espécies Reativas de Oxigênio/metabolismo , Medula Espinal/patologia , Medula Espinal/fisiopatologia
10.
Neuroinformatics ; 4(1): 65-80, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16595859

RESUMO

The thorough characterization of transgenic mouse models of human central nervous system diseases is a necessary step in realizing the full benefit of using animal models to investigate disease processes and potential therapeutics. Because of the labor- and resource-intensive nature of high-resolution imaging, detailed investigation of possible structural or biochemical alterations in brain sections has typically focused on specific regions of interest as determined by the researcher a priori. For example, Parkinson's disease researchers often focus imaging on regions of the brain expected to exhibit pathology such as the substantia nigra and striatum. Because of limitations in acquiring and storing high-resolution imaging data, additional data contained in the specimen is not usually acquired or disseminated/reported to the research community. Here we present a method of imaging large regions of brain at close to the resolution limit of light microscopy using a mosaic imaging technique in conjunction with multiphoton microscopy. These maps are being used to characterize several genetically modified animal models of neurological disease by filling the information "gap" among techniques such as magnetic resonance imaging and electron microscopic analysis.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/patologia , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Doenças do Sistema Nervoso/patologia , Animais , Mapeamento Encefálico/instrumentação , Redes de Comunicação de Computadores/tendências , Modelos Animais de Doenças , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/tendências , Ilustração Médica , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/tendências , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...